Abstract
We study the Lie structure of graded associative algebras. Essentially, we analyze the relation between Lie and associative graded ideals, and between Lie and associative graded derivations. Gathering together results on both directions, we compute maximal graded algebras of quotients of graded Lie algebras that arise from associative algebras. We also show that the Lie algebra Dergr(A) of graded derivations of a graded semiprime associative algebra is strongly non-degenerate (modulo a certain ideal containing the center of Dergr(A)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.