Abstract

A classical problem in ring theory is to study conditions under which a ring is forced to become commutative. Stimulated from Jacobson's famous result, several techniques are developed to achieve this goal. In the present note, we use a pair of rings, which are the ingredients of a Morita context, and obtain that if one of the ring is prime with the generalized (α, β)-derivations that satisfy certain conditions on the trace ideal of the ring, which by default is a Lie ideal, and the other ring is reduced, then the trace ideal of the reduced ring is contained in the center of the ring. As an outcome, in case of a semi-projective Morita context, the reduced ring becomes commutative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.