Abstract
A Lie group of transformations method is used to establish self-similar solutions to the problem of shock wave propagation through a relaxing gas and its interaction with the weak discontinuity wave. The forms of the equilibrium value of the vibrational energy and the relaxation time, varying with the density and pressure are determined for which the system admits self-similar solutions. A particular solution to the problem has been found out and used to study the effects of specific heat ratio and ambient density exponent on the flow parameters. The coefficients of amplitudes of reflected and transmitted waves after the interaction are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.