Abstract

In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in Statistical Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic manifold by a Lagrange 2-form, and defines in case of non null cohomology (non equivariance of the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density (of maximum entropy) that is covariant under the action of dynamic groups of physics (e.g., Galileo’s group in classical physics). Souriau Lie Group Thermodynamics was also addressed 30 years after Souriau by R.F. Streater in the framework of Quantum Physics by Information Geometry for some Lie algebras, but only in the case of null cohomology. Souriau method could then be applied on Lie groups to define a covariant maximum entropy density by Kirillov representation theory. We will illustrate this method for homogeneous Siegel domains and more especially for Poincaré unit disk by considering SU(1,1) group coadjoint orbit and by using its Souriau’s moment map. For this case, the coadjoint action on moment map is equivariant. For non-null cohomology, we give the case of Lie group SE(2). Finally, we will propose a new geometric definition of Entropy that could be built as a generalized Casimir invariant function in coadjoint representation, and Massieu characteristic function, dual of Entropy by Legendre transform, as a generalized Casimir invariant function in adjoint representation, where Souriau cocycle is a measure of the lack of equivariance of the moment mapping.

Highlights

  • The previous French quotes by the Mathematician Jacques Dixmier, the Physicist Pierre Duhem, and the Philosopher Gaston Bachelard are important to introduce the epistemological context of models that will be developed in the paper

  • - 1st Part on “Gauss Density on Lie groups”: This part is totally new in Machine learning with an extension of “Gauss densities” for Lie groups coupling both Souriau model, with Information Geometry in Geometric Machine Learning domain

  • We illustrate with two use-cases SU(1,1) and SE(2) that are the most useful Lie groups in Image Processing (Sub-Riemannian Geometry of vision with SE(2)), in robotics (rigid bodies statistical analysis with SE(2)), in Natural Langage Processing (SU(1,1) with methods of graph-embedding in Poincaré disk), . . . . Some tentatives have been developed to define noise on Lie groups by adding additional Gaussian components on elements of the Lie algebra [26,27,28,29], but these models are not mathematically correct because they do not preserve the symmetries and the moment map associated to these symmetries by the Noether Theorem

Read more

Summary

Introduction

The previous French quotes by the Mathematician Jacques Dixmier, the Physicist Pierre Duhem, and the Philosopher Gaston Bachelard are important to introduce the epistemological context of models that will be developed in the paper. Jacques Diximer refers to Alexander Kirillov seminal idea of coadjoint orbits method to consider Lie group representation model. We will try in this paper, to prove that these ideas could be reconciled by the Souriau model of Lie groups Thermodynamics through the mathematical structure of Lie algebra cohomology. After a the state of the art and trends in Machine Learning based on Information Geometry, we will present, in this introduction, the main objective of this paper to jointly apply models from geometric statistical mechanics and tools from Information geometry to solve “Gauss density” definition problem for statistics on Lie groups and homogeneous manifolds. We will present use-cases motivation for Lie group machine learning illustrating for Doppler statistics analysis with SU(1,1) statistics, and for kinematics data analysis with SE(2) statistics

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call