Abstract
The present research examines the behavior of a Jeffrey nanofluid flow across a stretching sheet under the effect of electric and magnetic fields. It comprises the Buongiorno model as well as an exponential heat source. The impact of chemical reaction has also been taken into consideration. While assuming no mass flux, the study considers boundary conditions for thermal convection and velocity slip. Lie group transformations are employed to transform the set of governing equations into a dimensionless system and later simulated using the finite difference scheme. It is found that the velocity profile rises as the Deborah number is enhanced whereas the ratio of relaxation to retardation time parameter has an inverse effect on the velocity profile. It is noted that per unit change in the Deborah number descends the drag coefficient by 31.29%. In this study, the response surface methodology and sensitivity analysis have been conducted by choosing heat transport as the dependent variable and the electric-field parameter ( 0.01 ≤ E ≤ 0.03 ) , exponential heat source parameter ( 0.02 ≤ Qe ≤ 0.06 ) , and Biot number ( 0.15 ≤ Bi ≤ 0.25 ) as the independent variables. The Nusselt number escalates when the Bi number is increased and drops as the E values are raised. In the instance of the Biot number, the Nusselt number exhibits the maximum sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.