Abstract

The symmetry group of MHD boundary layer flow and heat transfer of a non-Newtonian power-law fluid over a stretching surface under the effects of variable fluid properties is investigated. The similarity equations with the corresponding boundary conditions are solved numerically by using a shooting method with the fourth order Runge–Kutta integration scheme. Comparisons of the numerical method with the existing results in the literature are made and obtained an excellent agreement. It is observed that the heat transfer rate diminishes with an increase in magnetic parameter and variable thermal conductivity parameter. Further, the opposite influence is found with an increase in variable viscosity parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.