Abstract
For a finite-dimensional representation V of a group G we introduce and study the notion of a Lie element in the group algebra k[G]. The set L(V) \subset k[G] of Lie elements is a Lie algebra and a G-module acting on the original representation V. Lie elements often exhibit nice combinatorial properties. Thus, for G = S_n and V, a permutation representation, we prove a formula for the characteristic polynomial of a Lie element similar to the classical matrix-tree theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.