Abstract

Functional near-infrared spectroscopy (fNIRS) was used to test whether monitoring inhibition-related brain regions is a feasible method for detecting both infrequent liars and frequent liars. Thirty-two participants were divided into two groups: the deceptive group (liars) and the non-deceptive group (ND group, innocents). All the participants were required to undergo a simulated interrogation by a computer. The participants from the deceptive group were instructed to tell a mix of lies and truths and those of the ND group were instructed always to tell the truth. Based on the number of deceptions, the participants of the deceptive group were further divided into a infrequently deceptive group (IFD group, infrequent liars) and a frequently deceptive group (FD group, frequent liars). The infrequent liars exhibited greater neural activities than the frequent liars and the innocents in the left middle frontal gyrus (MFG) when performing the deception detection tasks. While performing deception detection tasks, infrequent liars showed significantly greater neural activation in the left MFG than the baseline, but frequent liars and innocents did not exhibit this pattern of neural activation in any area of inhibition-related brain regions. The results of individual analysis showed an acceptable accuracy of detecting infrequent liars, but an unacceptable accuracy of detecting frequent liars. These results suggest that using fNIRS monitoring of inhibition-related brain regions is feasible for detecting infrequent liars, for whom deception may be more effortful and therefore more physiologically marked, but not frequent liars.

Highlights

  • Functional near-infrared spectroscopy is an advanced technique which can detect the neural signals of the cortical regions of the brain (Tsuzuki and Dan, 2014). fNIRS has competitive temporal resolution and spatial resolution compared with other techniques (Zhu et al, 2015)

  • The function of inhibition is closely linked to the neural activities of the prefrontal cortex, especially related to the activities of the left middle frontal gyrus (MFG) and the bilateral inferior frontal gyrus (IFG; Jonides et al, 1998; Aron et al, 2003; Swick et al, 2008; Marchewka et al, 2012; Sip et al, 2013)

  • This study addresses three poorly understood aspects of lie detection: it raises the issue of the limitations of using inhibitionrelated brain regions to detect deception, which could initially explore whether simple neural indices could be used to detect deception for various populations

Read more

Summary

Introduction

Functional near-infrared spectroscopy (fNIRS) is an advanced technique which can detect the neural signals of the cortical regions of the brain (Tsuzuki and Dan, 2014). fNIRS has competitive temporal resolution and spatial resolution compared with other techniques (Zhu et al, 2015). Deception often leads to greater neural responses compared to telling the truth (Sip et al, 2008; Ganis et al, 2009; Gamer, 2014), which could make deception detection feasible. Ito et al (2011) found that deceiving in response to neutral events and to emotional events were both associated with more neural activation of left MFG than telling the truth. These studies all suggest that inhibition-related brain regions are a feasible index for detecting deception

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call