Abstract

We introduce a general framework of phase reduction theory for quantum nonlinear oscillators. By employing the quantum trajectory theory, we define the limit-cycle trajectory and the phase according to a stochastic Schrödinger equation. Because a perturbation is represented by unitary transformation in quantum dynamics, we calculate phase response curves with respect to generators of a Lie algebra. Our method shows that the continuous measurement yields phase clusters and alters the phase response curves. The observable clusters capture the phase dynamics of individual quantum oscillators, unlike indirect indicators obtained from density operators. Furthermore, our method can be applied to finite-level systems that lack classical counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.