Abstract
Of four types of Kaplansky algebras, type-2 and type-4 algebras have previously unobserved Z/2-gradings: nonlinear in roots. A method assigning a simple Lie superalgebra to every Z/2-graded simple Lie algebra in characteristic 2 is illustrated by seven new series. Type-2 algebras and one of the two type-4 algebras are demystified as nontrivial deforms (the results of deformations) of the alternate Hamiltonian algebras. The type-1 Kaplansky algebra is recognized as the derived of the nonalternate version of the Hamiltonian Lie algebra, the one that preserves a tensorial 2-form. Deforms corresponding to nontrivial cohomology classes can be isomorphic to the initial algebra, e.g., we confirm Grishkov's implicit claim and explicitly describe the Jurman algebra as such a semitrivial deform of the derived of the alternate Hamiltonian Lie algebra. This paper helps to sharpen the formulation of a conjecture describing all simple finite-dimensional Lie algebras over any algebraically closed field of nonzero characteristic and supports a conjecture of Dzhumadildaev and Kostrikin stating that all simple finite-dimensional modular Lie algebras are either of standard type or deforms thereof. In characteristic 2, we give sufficient conditions for the known deformations to be semitrivial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.