Abstract

Background Intra-articular lidocaine is commonly used. Purpose This study was conducted to determine whether short-term exposures to 1% and 2% lidocaine are toxic to articular chondrocytes, whether this is due to pH, and whether an intact articular surface is protective. Study Design Controlled laboratory study. Methods Fresh bovine articular chondrocytes in alginate bead cultures were treated with 1% or 2% lidocaine or buffered saline (pH 7.4, 7.0, and 5.0) for 15, 30, or 60 minutes. Chondrocytes were then analyzed for viability by flow cytometry 1 hour, 1 day, and 1 week later. Bovine osteochondral cores with and without the superficial 1 mm of cartilage removed were submerged in either 0.9% saline (pH 7.4) or in 1% or 2% lidocaine for 30 minutes and assessed for viability using fluorescent microscopy. Results Chondrocyte viability decreased after just 15-minute exposures to 1% lidocaine. Longer exposures to 1% and 2% lidocaine further reduced chondrocyte viability. Chondrotoxicity of 2% lidocaine was greater than 1% lidocaine. There was no difference in chondrocyte viability after exposures to saline solutions of pH 7.4, 7.0, or 5.0. An intact articular surface did not affect lidocaine's chondrotoxic effects. Conclusion Results show dose- and time-dependent cytotoxic effects of lidocaine on bovine articular chondrocytes. Reduction of pH alone did not decrease chondrocyte viability, and the intact articular surface was not protective. Clinical Relevance Although lidocaine chondrotoxicity was less than previously reported with bupivacaine, these observations suggest that local anesthetics as a class of drugs may negatively affect articular cartilage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.