Abstract

Treatment with Class III antiarrhythmic agents may lead to increased dispersion of repolarization and early afterdepolarizations (EADs), which are both likely substrates for torsades de pointes. Recent studies in vivo have shown that the prevalence of proarrhythmias induced by Class III agents may be reduced by Na(+)- or Ca(2+)-blocking agents. In the present study, tentative mechanisms for this protective effect were investigated in vitro. Transmembrane action potentials were recorded simultaneously from rabbit isolated ventricular muscle (VM) and Purkinje fibers (PF). At a basic cycle length (BCL) of 500 msec, the Class III agent almokalant (0.1 microM) increased the dispersion by prolonging the action potential duration (APD) significantly more in the PF (33% +/- 4.2%, n = 18) than in the VM (17% +/- 5.9%, n = 18, P < 0.05). In six of the preparations, addition of 1, 5, and 25 microM lidocaine reduced the almokalant-induced prolongation in a concentration-dependent manner mainly in the PF, thereby decreasing the dispersion. At 5 microM lidocaine, the remaining prolongation was 7% +/- 12.2% (P < 0.05 vs time controls) in the PF and 14% +/- 6.4% in the VM, respectively. In six other preparations, the addition of 0.01, 0.05, and 0.25 microM nisoldipine did not reduce the almokalant-induced prolongation in the PF and VM, but attenuated the spike-and-dome appearance of the action potential in the PF. In separate experiments performed at a BCL of 1000 msec, EADs developed in 2 of 6 and 5 of 6 PF during superfusion with almokalant (0.3 and 1 microM, respectively) at an APD of 828 +/- 41.4 msec. In six separate preparations pretreated with lidocaine (5 microM), the almokalant-induced prolongation in the PF was less pronounced and EADs were not observed. Pretreatment with nisoldipine (0.05 microM) did not influence the response to almokalant, and in 4 of 6 preparations the APD exceeded 1000 msec. Despite this extensive prolongation, EADs did not appear. At concentrations that did not affect the APD in the VM but reduced the APD in the PF, lidocaine suppressed almokalant-induced dispersion and the development of EADs. Nisoldipine, on the other hand, inhibited almokalant-induced EADs directly. Hence, the primary APD-prolonging effect of a Class III agent may be preserved, but the risk of proarrhythmias reduced, during concomitant treatment with low concentrations of a Na(+)- or Ca(2+)-blocking agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call