Abstract

The paper investigates the usage of LiDAR (light detection and ranging) data for the automation of mapping vegetation with respect to the evaluation of the ecological succession process. The study was performed for the repository of the “Fryderyk” mine (southern Poland). The post-flotation area analyzed is a unique refuge habitat—Natura2000, PLH240008—where a forest succession has occurred for several dozen years. Airborne laser scanning (ALS) point clouds were used for deriving detailed information about the morphometry of the spoil heap and about the secondary forest succession process—mainly vegetation parameters i.e., height and canopy cover. The area of the spoil heap is irregular with a flat top and steep slopes above 20°. Analyses of ALS point clouds (2011 and 2019), confirmed progression in the forest succession process, and land cover changes especially in wooded or bushed areas. Precise vegetation parameters (3D LiDAR metrics) were calculated and provided the following parameters: mean value of vegetation height as 6.84 m (2011) and 8.41 m (2019), and canopy cover as 30.0% (2011) and 42.0% (2019). Changes in vegetation volume (3D area) were shown: 2011—310,558 m3, 2019—325,266 m3, vegetation removal—85,136 m3, increasing ecological succession—99,880 m3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call