Abstract

Great attention has been paid to biomass estimation in recent years because biomass can simply be converted to carbon storage which is very important to understand the carbon cycle in the environment. Biomass is typically defined as the oven-dry mass of the above ground portion of a group of trees in forestry (Brown, 1997, 2002; Bartolot and Wynne, 2005; Momba and Bux, 2010). However there are a few studies about below ground biomass estimation. Conventionally, it is estimated using measurements which are recorded on the ground. On the other hand, the large number of studies have confirmed that Lidar as a kind of active remote sensing system is able to estimate biomass properly (Popescu, 2007). Hence time-consuming field works can be avoided and unavailable regions become accessible using a relatively low cost and automated Lidar system. (Nelson et al., 2004; Drake et al., 2002, 2003; Popescu et al., 2003, 2004). Traditional remote sensing systems detect vegetation cover using active and passive optical imaging sensors (Moorthy et al., 2011). Passive systems depend on the variability in vegetation spectral responses from the visible and near-infrared spectral regions. Widely accepted algorithms such as the Normalized Difference Vegetation Index (NDVI) have been empirically correlated to structural parameters (Jonckheere et al., 2006; Solberg et al., 2009; Morsdorf et al., 2004, 2006) such as Leaf Area Index (LAI) of canopy-level. On the contrary to passive optical imaging sensors, which are only capable of providing detailed measurements of horizontal distributions in vegetation canopies, Lidar systems can produce more accurate data in both the horizontal and vertical dimensions (Lim et al., 2003). Lidarbased instruments from space-borne, airborne, and terrestrial platforms provide a direct means of measuring forest characteristics which were unachievable previously by passive remote sensing imagery. Developments in remote sensing technologies, in particular laser scanning techniques, have led to innovative methods and models in the estimation of forest inventories in terms of efficiency and scales (Hudak et al., 2008; Tomppo et al., 2002; Tomppo and Halme, 2004; Zhao et al., 2009; Koch, 2010; Yu et al., 2011). Lidar experiments and researches within the remote sensing community are now focusing to develop robust methodologies. These methods and models employ very precise 3D point cloud data (Omasa et al., 2007) to direct process and retrieve vegetation structural attributes which are validated by in situ measurements of vegetation biophysical parameters (Maas et al., 2008; Cote et al., 2011). Laser scanning systems have been used to extract various kinds of parameters, such as tree height, crown size, diameter at breast height (dbh), canopy density, crown volume, and tree

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call