Abstract

We present a union of three measurement systems on the basis of the Siberian lidar station and mobile ozone lidar. The lidars are designed for studying the ozonosphere using the method of differential absorption and scattering, as well as for studying aerosol fields using elastic single scattering. The systems are constructed on the basis of Nd:YAG lasers (SOLAR) and an Nd:YAG laser (LOTIS TII), a XeCl laser (Lambda Physik) and receiving telescopes assembled using the Kassegrain system with a diameter 0.35 m and the Newtonian 0.5 m system. Lidars operate in photon-counting mode and record lidar signals with a spatial resolution from 1.5 m to 160 m at sensing wavelengths of 299/341 nm in the altitude range of ~0.1–12 km and ~5–20, and at 308/353 nm in the altitude range of ~15–45 km. The union of these three measurement systems was used to carry out field experiments of atmospheric lidar sensing in Tomsk and to present the results of retrieving the vertical profile of the ozone concentration. In this study, coverage of the entire ozonosphere by the lidars was carried out for the first time in Russia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call