Abstract

Environment awareness through advanced sensing systems is a major requirement for a mobile robot to operate safely, particularly when the environment is unstructured, as in an outdoor setting. In this paper, a multi-sensory approach is proposed for automatic traversable ground detection using 3D range sensors. Specifically, two classifiers are presented, one based on laser data and one based on stereovision. Both classifiers rely on a self-learning scheme to detect the general class of ground and feature two main stages: an adaptive training stage and a classification stage. In the training stage, the classifier learns to associate geometric appearance of 3D data with class labels. Then, it makes predictions based on past observations. The output obtained from the single-sensor classifiers is statistically combined exploiting their individual advantages in order to reach an overall better performance than could be achieved by using each of them separately. Experimental results, obtained with a test bed platform operating in a rural environment, are presented to validate this approach, showing its effectiveness for autonomous safe navigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.