Abstract

Capecitabine (CAP), a prodrug, needs to be converted to 5-fluorouracil by several key enzymes, including thymidine phosphorylase (TP). To improve the therapeutic index, potentiation of antitumor activity of CAP is required. In this study, we explored whether lidamycin (LDM), an enediyne anticancer antibiotic, can induce synergistic antitumor effects in combination with CAP in murine breast cancer in vitro and in vivo. Using MTT, cell migration and invasion, siRNA knockdown, and Western blot assays, the in vitro synergistic effects of LDM plus CAP on 4T1(LUC) cells were evaluated, and the mechanism of this synergy was explored. For in vivo model of orthotopic implantation model of 4T1(LUC) cells, optical molecular imaging system was utilized to evaluate the growth of primary tumor and metastasis. To further understand the mechanism of action of the LDM/CAP combination, immunohistochemistry analysis was carried out to detect thymidine phosphorylase induction and ERK signaling. As determined by MTT and transwell assay, LDM enhanced the inhibitory effects of CAP on cancer cell proliferation, migration, and invasion. Western blot showed that this synergistic effect was attributed to the up-regulated expression of TP induced by LDM. Knocking down TP impaired the synergistic anti-proliferative effect of LDM and CAP. Furthermore, our data suggested that LDM-induced up-regulation of TP both in vitro and in vivo is associated with ERK activation, because the inhibition of ERK activity by ERK inhibitor U0126 abrogated LDM-induced TP up-regulation. In animal models, LDM plus CAP potently inhibited primary tumor growth as well as lung metastasis compared with control or single-agent-treated group. LDM can potentiate the antitumor effects of CAP on breast cancer line. The synergistic effects suggest that the combination of LDM and CAP is an innovative antitumor strategy for breast cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.