Abstract

We examined the mechanism by which lithium chloride (LiCl) attenuates the impaired learning capability and memory function of dual‐transgenic APP/PS1 mice. Six‐ or 12‐month‐old APP/PS1 and wild‐type (WT) mice were randomized into four groups, namely WT, WT+Li (100 mg LiCl/kg body weight, gavage once daily), APP/PS1 and APP/PS1+Li. Primary rat hippocampal neurons were exposed to β‐amyloid peptide oligomers (AβOs), LiCl and/or XAV939 (inhibitor of Wnt/β‐catenin) or transfected with small interfering RNA against the β‐catenin gene. In the cerebral zone of APP/PS1 mice, the level of Aβ was increased and those of α7 nicotinic acetylcholine receptors (nAChR), phosphor‐GSK3β (ser9), β‐catenin and cyclin D1 (protein and/or mRNA levels) reduced. Two‐month treatment with LiCl at ages of 4 or 10 months weakened all of these effects. Similar expression variations were observed for these proteins in primary neurons exposed to AβOs, and these effects were attenuated by LiCl and aggravated by XAV939. Inhibition of β‐catenin expression lowered the level of α7 nAChR protein in these cells. LiCl attenuates the impaired learning capability and memory function of APP/PS1 mice via a mechanism that might involve elevation of the level of α7 nAChR as a result of altered Wnt/β‐catenin signalling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.