Abstract
We consider the connections <TEX>$\nabla$</TEX> on the Rizza manifold (M, J, L) satisfying <TEX>${\nabla}G=0\;and\;{\nabla}J=0$</TEX>. Among them, we derive a Lichnerowicz connection from the Cart an connection and characterize it in terms of torsion. Generalizing Kahler condition in Hermitian geometry, we define a Kahler condition for Rizza manifolds. For such manifolds, we show that the Cartan connection and the Lichnerowicz connection coincide and that the almost complex structure J is integrable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.