Abstract

AbstractThe effects of prescribed burning and thinning on lichen communities is a poorly understood aspect of biodiversity conservation, despite the widespread use of these practices to achieve conservation-oriented land management goals. To address this knowledge gap we documented apparent changes in the diversity and abundance of lichens following 0 to 2 growing-season burns preceded by 0 to 1 commercial thinnings within nine southern pine dominated stands on the Delmarva Peninsula of Maryland, USA. Corticolous lichens growing on the stems and within the canopies of pines and co-occurring hardwoods were identified to species and fractional coverage was estimated; growth forms and reproductive modes were also determined. A total of 93 lichen taxa were recorded on the 19 tree species (4 pines, 15 hardwoods) represented in this study. Burning emerged as a strong driver of reductions in lichen diversity (P = 0.002), whereas thinning in the absence of burning did not (P = 0.279). In general, we found that lichens growing on tree bases and lower bole sections were more strongly impacted by burning, both in terms of diversity and cover, than those residing in the canopy. The apparent refugia represented by the canopy was qualified by the limited overlap in lichen species composition observed among the various sampling heights. This work calls attention to an understudied component of biodiversity that appears to be sensitive to fire management; however, we suggest that these results need to be interpreted in the context of altered disturbance regimes and the trajectory of community assembly resulting from long-term fire exclusion.

Highlights

  • Terrestrial biodiversity has been substantially diminished by anthropogenic factors including land-use change, altered disturbance regimes, and, increasingly, as a result of global climate change (IPCC 2013)

  • Contemporary approaches to land management that seek to re-establish missing elements of ecosystem composition, structure, and function in order to enhance biodiversity and resilience typically embrace approaches grounded on historic disturbance regimes (Kohm and Franklin 1997, Seymour et al 2002, Egan 2005, Mitchell et al 2006, Wiens et al 2012)

  • Available evidence suggests that the variable lag times between treatments and observations represented here are not likely to have been sufficient for lichen taxa to become reestablished or expand substantially following these types of disturbances (Jandt and Meyers 2000, Coxson and Marsh 2001)

Read more

Summary

Introduction

Terrestrial biodiversity has been substantially diminished by anthropogenic factors including land-use change, altered disturbance regimes, and, increasingly, as a result of global climate change (IPCC 2013). Contemporary approaches to land management that seek to re-establish missing elements of ecosystem composition, structure, and function in order to enhance biodiversity and resilience typically embrace approaches grounded on historic disturbance regimes (Kohm and Franklin 1997, Seymour et al 2002, Egan 2005, Mitchell et al 2006, Wiens et al 2012) Wildland fires, both natural and human caused, have shaped forest communities and influenced plant specialization for millennia in eastern North America (Whitney 1994, Delcourt and Delcourt 1997, Frost 1998, Platt 1999, Ryan et al 2013). Prescribed burns are increasingly used in an effort to reverse the detrimental impacts that fire exclusion has had on these fire-adapted ecosystems (Platt 1999, Brooks et al 2004, Agee and Skinner 2005, Ryan et al 2013)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call