Abstract

The search for biominerals is one of the core targets in the deep space exploration mission. Stromatolite phosphorite is a typical biomineral that preserves early life on Earth. The enrichment of phosphate is closely related to microorganisms and their secretions. Laser-induced breakdown spectroscopy (LIBS) has become an essential payload in deep space exploration with the ability to analyze chemical elements remotely, rapidly, and in situ. This paper aims to evaluate the rapid identification of biological and non-biological minerals through a remote LIBS payload. LIBS is used for element analysis and mineral classification determination, and molecular laser-induced fluorescence (MLIF) is used to detect halogenated element F to support the existence of fluorapatite. This paper analyzes the LIBS-MLIF spectral characteristics of stromatolites and preliminarily evaluates the feasibility of P element quantification. The results show that LIBS technology can recognize biological and non-biological signals. This discovery is significant because it is not limited to detecting and analyzing element composition. It can also realize the detection of molecular spectrum based on selective extraction of CaF molecule. Therefore, the LIBS payload still has the potential to search for biomineral under the condition of adjusting the detection strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call