Abstract

Given a global specification contract and a system described by a composition of contracts, system verification reduces to checking that the composite contract refines the specification contract, i.e. that any implementation of the composite contract implements the specification contract and is able to operate in any environment admitted by it. Contracts are captured using high-level declarative languages, for example, linear temporal logic (LTL). In this case, refinement checking reduces to an LTL satisfiability checking problem, which can be very expensive to solve for large composite contracts. This paper proposes a scalable refinement checking approach that relies on a library of contracts and local refinement assertions. We propose an algorithm that, given such a library, breaks down the refinement checking problem into multiple successive refinement checks, each of smaller scale. We illustrate the benefits of the approach on an industrial case study of an aircraft electric power system, with up to two orders of magnitude improvement in terms of execution time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.