Abstract
It is well-known that stable Cantor sets are topologically conjugate to adding machines. In this work we show are also conjugate to an algebraic object, the ring of P−adic integers with respect to group tramnslation. This ring is closely related to the field of p-adic numbers; connections and distintions are explored. The inverse limit construction provides a purely dynamical proof of an algebraic result: the classification of adding machines, or P−adic integers, up to group isomorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.