Abstract

Two new selenides with diamond-like structures, Li7 Cd4.5 Ge4 Se16 and Li6.4 Cd4.8 Sn4 Se16 , were synthesized by using a conventional high-temperature solid-state reaction method. They crystallize in the space group Pna21 (no. 33) of the orthorhombic system. Their three-dimensional frameworks consist of corner-sharing LiSe4 , CdSe4 , and MSe4 (M=Ge, Sn) tetrahedra. These two compounds exhibit strong powder second-harmonic generation responses that are about 1.2 and 2.5 times that of the benchmark AgGaS2 at a laser wavelength of λ=2.09 μm, and also demonstrate type I phase-matchable behavior. The optical bandgaps were determined to be 2.18 and 1.95 eV for Li7 Cd4.5 Ge4 Se16 and Li6.4 Cd4.8 Sn4 Se16 , respectively. Furthermore, these two materials exhibit congruent melting behavior at rather low temperatures of 985 and 1060 K, respectively, which makes bulk single crystal growth by using the Bridgman-Stockbarger method possible. Our study indicates that these two materials show advantages over the traditional IR NLO material CdSe and are promising for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.