Abstract

From reaction of excess lithium with tin, we isolate well-crystallized Li5Sn and solve the crystal structure from single-crystal X-ray diffraction data. The orthorhombic structure (space group Cmcm) features the same coordination polyhedra around tin and lithium as previously predicted by electronic structure calculations for this composition, however differently arranged. An extensive ab initio analysis, including thermodynamic integration using Langevin dynamics in combination with a machine-learning potential (moment tensor potential), is conducted to understand the thermodynamic stability of this Cmcm Li5Sn structure observed in our experiments. Among the 108 Li5Sn structures systematically derived using the structure enumeration algorithm, including the experimental Cmcm structure and those obtained in previous ab initio studies, another new structure with the space group Immm is found to be energetically most stable at 0 K. This computationally discovered Immm structure is also found to be thermodynamically more stable than the Cmcm structure at finite temperatures, indicating that the Cmcm Li5Sn structure observed in our experiments is favored likely due to kinetic reasons rather than thermodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.