Abstract

The Li5(BH4)3NH complex hydride, obtained by ball milling LiBH4 and Li2NH in various molar ratios, has been investigated. Using X-ray powder diffraction analysis the crystalline phase has been indexed with an orthorhombic unit cell with lattice parameters a = 10.2031(3), b = 11.5005(2), and c = 7.0474(2) A at 77 °C. The crystal structure of Li5(BH4)3NH has been solved in space group Pnma, and refined coupling density functional theory (DFT) and synchrotron radiation X-ray powder diffraction data have been obtained for a 3LiBH4:2Li2NH ball-milled and annealed sample. Solid-state nuclear magnetic resonance measurements confirmed the chemical shifts calculated by DFT from the solved structure. The DFT calculations confirmed the ionic character of this lithium-rich compound. Each Li+ cation is coordinated by three BH4– and one NH2– anion in a tetrahedral configuration. The room-temperature ionic conductivity of the new orthorhombic compound is close to10–6 S/cm at room temperature, with activation energy of 0...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call