Abstract

The innovation of advanced high-rate anodes is of great significance for the development of high-power and fast-charging lithium-ion batteries (LIBs). In this work, self-supported Li4Ti5O12@carbon (LTO@C) nanotube arrays as a high-quality anode are fabricated via anodizing and hydrothermal processes. Owing to the structure having a high contact surface area and good stability, as well as the incorporation of carbon, the LTO@C exhibits a remarkable rate capability (a reversible capability of 290 mA h g-1, 251.9 mA h g-1, 228.8 mA h g-1, and 208.7 mA h g-1 at 1C, 5C, 10C, and 20C, respectively) and cycling performance (71.7% capacity retention after 1000 cycles at 10C), which is superior to LTO. These features suggest the promising application of LTO@C in high-power energy storage areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.