Abstract

Germanate is garnering increasing attention in the field of optoelectronics owing to its competitive optical transparency and robust stability. Herein, a novel lithium-rich rare-earth germanate, Li13YGe4O16, was fabricated for the first time using a high-temperature solution approach. This compound adopts the asymmetric space group Cmc21 (no. 36), characterized by isolated [YO6] and [GeO4] structural motifs with Li+ cations located in the channel. Notably, Li13YGe4O16 presents a short ultraviolet cutoff edge at 240 nm, indicative of an enlarged band gap of 4.96 eV and showcases a wide mid-infrared transmission region exceeding 6.0 μm. Moreover, Li13YGe4O16 features exceptional thermal stability and moderate second harmonic generation (SHG) intensity. Additionally, a theoretical analysis suggests that the distorted [YO6] octahedra. [GeO4] and [LiO4] tetrahedra play a significant role in the optical activities of Li13YGe4O16. These attributes endow Li13YGe4O16 with the potential to serve as a new mid-IR nonlinear optical (NLO) crystal and enrich the structural chemistry of germanates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call