Abstract

We first report the ultra-fast charge–discharge capability of organic–inorganic (Li(Mn1/3Ni1/3Fe1/3)O2–Polyaniline (PANI)) nanocomposites prepared by mixed hydroxide route and followed by polymerization of aniline monomers with different concentrations (0.1 and 0.2 mol concentration of PANI). Li-insertion properties are evaluated in half-cell configuration, test cell (Li/Li(Mn1/3Ni1/3Fe1/3)O2–PANI) comprising 0.2 mol. PANI delivered the reversible capacity of ∼127, ∼114 and ∼110 mAh g−1 at ultra-high current rate of 5, 30 and 40 C, respectively with exceptional cycleability between 2 and 4.5 V vs. Li. Such an exceptional performance is mainly due to the conducting pathways promoted by PANI network and it is revealed by impedance measurements. This result certainly provides the possibility of using such layered type Fe based cathode materials in high power Li-ion batteries to drive zero emission vehicles such as hybrid electric vehicles or electric vehicles applications in near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call