Abstract
All-solid-state batteries (ASSB) require stable and safe Li metal anode, which needs surface preparation to increase lithium diffusion and impede the formation of dendrites. In this work, the formation of a thin LiZn layer on lithium metal using sputter deposition is reported. This method was selected due to the absence of solvents and by-products generated during the modification, for its rapidity and because the formation of the alloy is performed in a clean and controlled atmosphere. Zinc has been chosen for its low cost and high Li+ ion diffusion coefficient of the corresponding LiZn alloy that is 1000 times higher than lithium. Different parameters for the Zn deposition were investigated such as the distance between the Zn target and Li foil, the effect of substrate tilt and the direct current applied to the target. Electrochemical performance of LiFePO4/solid polymer electrolyte/Li ASSB demonstrated the superiority of the LiZn anodes and the clear influence of deposition parameters on the durability and performance at high C-rates. Scanning electron microscopy images of the cross-sectional view of LFP/SPE/Li stackings extracted from pouch cells after cycling showed an evident migration of Zn into the bulk Li metal anode as well as the formation of AlZn nanoparticles. In addition, the formation of Li dendrites was effectively reduced for the cells made with the LiZn-protected Li metal anode. Finally, we reported an interesting observation concerning the influence of sputter conditions on the variation of morphology of Li grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.