Abstract

The Li+ ionic conduction properties of the Li2La2/3Ta2O7 layered perovskite compound have been investigated by complementary techniques: impedance spectroscopy, 7Li NMR and thermal neutron powder diffraction. Up to 770 K, the results are consistent with an electrical conductivity dominated by Li+ ions jumping between Li1 and Li2 sites, the adjacent centers of the two kinds of LiO4 tetrahedra constituting the interlayer region of the structure. The sudden event, observed near 770 K on the curve log(σT) = f(1000/T), is associated with significant changes to the 7Li NMR signal and to a structural modification followed by neutron powder diffraction up to 973 K. All these facts are consistent with the displacement at 770 K of the lithium ions residing in the Li1 sites. Neutron powder diffraction showed that, in the interlayer region, the location of the lithium ions in the Li2 sites remains unchanged. However, 17% of the Li1 population leaves its tetrahedral position to occupy a new Li3 site inside the perovskite cages, very close to their four O2− bottlenecks. The other Li+ ions (83%) remain in the interlayer but their coordination changes from tetrahedral to a five fold one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.