Abstract

Localized high-concentration electrolytes (LHCEs), which are mixtures of highly concentrated electrolytes (HCEs) and non-coordinating diluents, have attracted significant interest as promising liquid electrolytes for next-generation Li secondary batteries, owing to their various beneficial properties both in the bulk and at the electrode/electrolyte interface. We previously reported that the large Li+-ion transference number in sulfolane (SL)-based HCEs, attributed to the unique exchange/hopping-like Li+-ion conduction, decreased upon dilution with the non-coordinating hydrofluoroether (HFE) despite the retention of the local Li+-ion coordination structure. Therefore, in this study, we investigated the effects of HFE dilution on the Li+ transference number and the solution structure of SL-based LHCEs via the analysis of dynamic ion correlations and molecular dynamics simulations. The addition of HFE caused nano-segregation in the SL-based LHCEs to afford polar and nonpolar domains and fragmentation of the polar ion-conducting pathway into smaller clusters with increasing HFE content. Analysis of the dynamic ion correlations revealed that the anti-correlated Li+–Li+ motions were more pronounced upon HFE addition, suggesting that the Li+ exchange/hopping conduction is obstructed by the non-ion-conducting HFE-rich domains. Thus, the HFE addition affects the entire solution structure and ion transport without significantly affecting the local Li+-ion coordination structure. Further studies on ion transport in LHCEs would help obtain a design principle for liquid electrolytes with high ionic conductivity and large Li+-ion transference numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call