Abstract

We present an efficient way to calculate the phase diagram of the quaternary Li−Fe−P−O2 system using ab initio methods. The ground-state energies of all known compounds in the Li−Fe−P−O2 system were calculated using the generalized gradient approximation (GGA) approximation to density functional theory (DFT) and the DFT+U extension to it. Considering only the entropy of gaseous phases, the phase diagram was constructed as a function of oxidation conditions, with the oxygen chemical potential, μO2, capturing both temperature and oxygen partial pressure dependence. A modified Ellingham diagram was also developed by incorporating the experimental entropy data of gaseous phases. The phase diagram shows LiFePO4 to be stable over a wide range of oxidation environments, being the first Fe2+-containing phase to appear upon reduction at μO2 = −11.52 eV and the last of the Fe-containing phosphates to be reduced at μO2 = −16.74 eV. Lower μO2 represents more reducing conditions, which generally correspond to higher t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.