Abstract
Li/Fe modified Zn0.3Ni0.7O, (Zn0.3Ni0.7)1−x−y Li x Fe y O (x = 0–0.06, y = 0–0.04), were synthesized by a wet chemical synthesis methods and sintered by the traditional ceramic sintering technology. The phase component and related electrical properties of the ceramics were investigated. The analysis of X-ray diffraction indicates that all the prepared ceramics have a cubic crystalline structure. The resistance-temperature feature exhibits a typical effect of negative temperature coefficient (NTC) of resistivity in a temperature range from 25 to 250 °C. The ceramics have room-temperature resistivities ranging from 26.6 Ω cm to 102.8 MΩ cm and thermal-sensitivity constants from 2444 to 8378 K by changing the concentrations of Li and Fe. The complex impedance analysis reveals that both grain effect and grain boundary effect contribute collectively to the NTC feature of the ceramics. The possible conduction models were proposed to combine with electron-hopping conduction and band conduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.