Abstract

Dirac gauginos are a well-motivated extension of the MSSM, leading to interesting phenomenological consequences. At the LHC, gluino-pair production is enhanced while squark production is suppressed as compared to the MSSM, and the decay signatures are altered by a more complex chargino and neutralino spectrum. We investigate how this impacts current gluino and squark mass limits from Run 2 of the LHC. Concretely, we compare different assumptions about the electroweak-ino spectrum through four benchmark models paying particular attention to the effect of the trilinear λS coupling, which induces a mass splitting between the mostly bino/U(1) adjoint states. Among other results, we show that for large λS the additional {tilde{chi}}_2^0to foverline{f}{tilde{chi}}_1^0 decays somewhat weaken the limits on gluinos (squarks) in case of heavy squarks (gluinos). Moreover, we compare the limits in the gluino vs. squark mass plane to those obtained in equivalent MSSM scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.