Abstract

Fractional calculus has been found to be a great asset in finding fractional dimension in chaos theory, in viscoelasticity diffusion, in random optimal search etc. Various techniques have been proposed to solve differential equations of fractional order. In this paper, the Laplace-Homotopy Analysis Method (LHAM) is applied to obtain approximate analytic solutions of the nonlinear Rosenau-Hyman Korteweg-de Vries (KdV), K(2, 2), and Burgers' equations of fractional order with initial conditions. The solutions of these equations are calculated in the form of convergent series. The solutions obtained converge to the exact solution when α = 1, showing the reliability of LHAM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call