Abstract

To reconstruct the instantaneous secretion rate (ISR) of LH and FSH after GnRH administration in normal volunteers using non-parametric deconvolution, and to derive a direct integration formula to evaluate the amount of LH and FSH secreted during the first 60 min after the stimulus. First, the deconvolution method was validated in vivo by reconstructing doses ranging from 7.5 IU to 75 IU injected in three healthy adult volunteers whose endogenous LH had previously been downregulated by pretreating them, 3-4 weeks earlier, with 3.75 mg GnRH agonist i.m. Then, 40 healthy adult male volunteers were tested with a single 100 microg GnRH bolus, administered at 0 min. LH and FSH concentrations were determined at -30, 0, 15, 30, 45, 60, 90, and 120 min. The validation study, conducted over a 10-fold range of doses, demonstrated that non-parametric deconvolution provided a reasonably accurate estimate of the amount of hormone entering the circulation. Applying deconvolution to the LH and FSH responses to GnRH, the ISRs of both hormones were shown to have a similar pattern, with a clearly delimited pulse after the GnRH bolus. In conjunction with earlier analyses of estimates of GHRH-stimulated GH secretion, we conclude that secretagogues evoke discrete LH, FSH, and GH secretory bursts of about 60 min total duration, despite markedly unequal (glyco-)protein hormone half-lives (18-500 min). With respect to the assessment of total hormone release during the first 60 min after the stimulus, the integration formula provided a reliable approximation of the result obtained by deconvolution, and had a negligible dependence on the samples at times 90 and 120 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.