Abstract

Life cycle assessment (LCA), a tool used to assess the environmental impacts of products and processes, has been used to evaluate a range of aquaculture systems. Eighteen LCA studies were reviewed which included assessments of recirculating aquaculture systems (RAS), flow-through systems, net cages, and pond systems. This review considered the potential to mitigate environmental burdens with a movement from extensive to intensive aquaculture systems. Due to the diversity in study results, specific processes (feed, energy, and infrastructure) and specific impact categories (land use, water use, and eutrophication potential) were analyzed in-depth. The comparative analysis indicated there was a possible shift from local to global impacts with a progression from extensive to intensive systems, if mitigation strategies were not performed. The shift was partially due to increased electricity requirements but also varied with electricity source. The impacts from infrastructure were less than 13 % of the environmental impact and considered negligible. For feed, the environmental impacts were typically more dependent on feed conversion ratio (FCR) than the type of system. Feed also contributed to over 50 % of the impacts on land use, second only to energy carriers. The analysis of water use indicated intensive recirculating systems efficiently reduce water use as compared to extensive systems; however, at present, studies have only considered direct water use and future work is required that incorporates indirect and consumptive water use. Alternative aquaculture systems that can improve the total nutrient uptake and production yield per material and energy based input, thereby reducing the overall emissions per unit of feed, should be further investigated to optimize the overall of aquaculture systems, considering both global and local environmental impacts. While LCA can be a valuable tool to evaluate trade-offs in system designs, the results are often location and species specific. Therefore, it is critical to consider both of these criteria in conjunction with LCA results when developing aquaculture systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.