Abstract
Neuropsychological studies suggest that co-operative activities among different brain functional areas drive high-level cognitive processes. To learn the brain activities within and among different functional areas of the brain, we propose local-global-graph network (LGGNet), a novel neurologically inspired graph neural network (GNN), to learn local-global-graph (LGG) representations of electroencephalography (EEG) for brain-computer interface (BCI). The input layer of LGGNet comprises a series of temporal convolutions with multiscale 1-D convolutional kernels and kernel-level attentive fusion. It captures temporal dynamics of EEG which then serves as input to the proposed local- and global-graph-filtering layers. Using a defined neurophysiologically meaningful set of local and global graphs, LGGNet models the complex relations within and among functional areas of the brain. Under the robust nested cross-validation settings, the proposed method is evaluated on three publicly available datasets for four types of cognitive classification tasks, namely the attention, fatigue, emotion, and preference classification tasks. LGGNet is compared with state-of-the-art (SOTA) methods, such as DeepConvNet, EEGNet, R2G-STNN, TSception, regularized graph neural network (RGNN), attention-based multiscale convolutional neural network-dynamical graph convolutional network (AMCNN-DGCN), hierarchical recurrent neural network (HRNN), and GraphNet. The results show that LGGNet outperforms these methods, and the improvements are statistically significant ( ) in most cases. The results show that bringing neuroscience prior knowledge into neural network design yields an improvement of classification performance. The source code can be found at https://github.com/yi-ding-cs/LGG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.