Abstract
With the rapid growth of Web databases, it's necessary to extract and integrate large-scale data available in deep Web automatically. But current Web search engines conduct page-level ranking, which are becoming inadequate for entity-oriented vertical search. In this paper, we present an entity-level ranking mechanism called LG-ERM for deep Web query based on local scoring and global aggregation. Unlike traditional approaches, LG-ERM considers more rank influencing factors including the uncertainty of entity extraction, the style information of entities and the importance of Web sources, as well as the entity relationship. By combining local scoring and global aggregation in ranking, the query result can be more accurate and effective to meet users' needs. The experiments demonstrate the feasibility and effectiveness of the key techniques of LG-ERM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.