Abstract
Abstract. Let Π be a generic cuspidal automorphic representation of GSp(2) defined over a totally real algebraic number field k whose archimedean type is either a (limit of) large discrete series representation or a certain principal series representation. Through explicit computation of archimedean local zeta integrals, we prove the functional equation of tensor product L-functions L(s,Π × σ) for an arbitrary cuspidal automorphic representation σ of GL(2). We also give an application to the spinor L-function of Π.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.