Abstract

The paper presents a general approach to approximate a nonlinear system by a linear fractional representation (LFR), which is suitable for LFT-based robust stability analysis and control design. In a first step, the nonlinear system will be transformed into a quasi linear parameter varying (LPV) system. In the second step, the nonlinear dependencies in the quasi-LPV, which are not rational in the parameters, are approximated using polynomial fitting based on l1-regularized least squares. Using this approach an almost Pareto front between the accuracy and complexity of the resulting LFR can be efficiently obtained. The effectiveness of the proposed method is demonstrated by applying it to a nonlinear missile model of industrial complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.