Abstract
In this paper, we explore a geo-spatial learning-to-rank framework for identifying local experts. Three of the key features of the proposed approach are: (i) a learning-based framework for integrating multiple factors impacting local expertise that leverages the fine-grained GPS coordinates of millions of social media users; (ii) a location-sensitive random walk that propagates crowd knowledge of a candidate’s expertise; and (iii) a comprehensive controlled study over AMT-labeled local experts on eight topics and in four cities. We find significant improvements of local expert finding versus two state-of-the-art alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.