Abstract
This study adopts a lexicon-based approach to address violence on social media. It uses FrameNet 1.7 (fn) and WordNet 3.1 (wn) to build a hierarchical domain-specific language resource of violence. The proposed lexicon tethers fn’s innovative integration of linguistic and paralinguistic knowledge to wn’s hierarchically-organized database. This tether alleviates the need to gather all paralinguistic violence-associated scenes and organize their linguistic realizations hierarchically. The proposed methodology can be internationally applied, given the multilingual availability of fn and wn, to cognitively and quantitatively explore a concept or a phenomenon. The lexicon is applied, then, to a corpus representing posts and comments retrieved from Donald Trump’s Facebook public page. Results reveal that the proposed lexicon recalls 92.68 of the total violence-related words in the corpus with a 76.31 precision (F-score= 83.7). More important, relating wn to fn inspires the creation of new frames, suggests slight modifications to existing ones and advocates promising mapping between some frames and synsets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.