Abstract
We investigate a class of effect algebras that can be represented in the form $${\Gamma (H \overrightarrow{\times} G}$$ , (u, 0)), where $${H \overrightarrow{\times} G}$$ means the lexicographic product of an Abelian unital po-group (H, u) and an Abelian directed po-group G. We study conditions when an effect algebra is of this form. Fixing a unital po-group (H, u), the category of strongly (H, u)-perfect effect algebras is introduced and it is shown that it is categorically equivalent to the category of directed po-groups with interpolation. We prove some representation theorems of lexicographic effect algebras, including a subdirect product representation by antilattice lexicographic effect algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.