Abstract
The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hannagan, Magnuson & Grainger, 2013; You & Magnuson, 2018) is an interactive activation model with many similarities to TRACE (McClelland & Elman, 1986). However, by replacing most time-specific nodes in TRACE with time-invariant open-diphone nodes, TISK uses orders of magnitude fewer nodes and connections than TRACE. Although TISK performed remarkably similarly to TRACE in simulations reported by Hannagan et al., the original TISK implementation did not include lexical feedback, precluding simulation of top-down effects, and leaving open the possibility that adding feedback to TISK might fundamentally alter its performance. Here, we demonstrate that when lexical feedback is added to TISK, it gains the ability to simulate top-down effects without losing the ability to simulate the fundamental phenomena tested by Hannagan et al. Furthermore, with feedback, TISK demonstrates graceful degradation when noise is added to input, although parameters can be found that also promote (less) graceful degradation without feedback. We review arguments for and against feedback in cognitive architectures, and conclude that feedback provides a computationally efficient basis for robust constraint-based processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.