Abstract
The present study aimed to investigate the association between Lewis(y) antigen and chemoresistance in ovarian cancer and to elucidate the underlying molecular mechanisms. Lewis(y) expression in chemoresistant ovarian cancer tissues and cells was detected by immunohistochemistry. α1,2‑fucosyltransferase (FUT1) expression in different ovarian cancer chemotherapy-resistant cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR). Genes differentially expressed in the chemoresistant and sensitive groups were screened using a gene chip followed by validation using RT-qPCR and western blot analysis. We found that Lewis(y) and FUT1 expression in ovarian cancer cells was significantly increased following the induction of drug resistance. The positive expression rate and intensity of Lewis(y) in ovarian cancer chemoresistant tissues were also significantly higher than those in the sensitive group. Compared with the non-resistant cell lines, the differentially expressed genes were mainly enriched in the terms related to the transmembrane receptor protein tyrosine kinase signaling pathway and positive regulation of cell proliferation. Interaction network analysis predicted genes participating in the regulation of apoptotic processes. The highly differential expression of AnnexinA4 (ANXA4), BCL2 interacting killer(BIK), transmembrane4L six family member4(TM4SF4) and pleckstrin homology-like domain familyA member1 (PHLDA1) was validated using RT-qPCR in ovarian cancer cell lines. Finally, ANXA4 expression was increased at both the mRNA and protein level in the drug‑resistant cells, and in addition, ANXA4 contained a Lewis(y) structure. The expression of Bcl-2 and other anti-apoptotic proteins increased with the increase of Lewis(y) expression. After blocking Lewis(y) using an antibody, the expression of the involved signaling pathway and apoptosis-related proteins decreased significantly. These findings provide strong evidence that Lewis(y) is a component of the structure of the ANXA4 membrane protein. Its overexpression can abnormally activate signaling pathways and regulate the expression of a number of factors, forming a positive feedback loop to induce the chemoresistance of ovarian cancer cells, and ultimately promoting the progression of ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.