Abstract

In this contribution, Lewis pairs (LPs) composed of N-heterocyclic olefins (NHOs) with different steric hindrance and nucleophilicity as Lewis bases (LBs) and Al-based compounds with comparable acidity but different steric hindrance as Lewis acids (LAs) were applied for 1,4-selective polymerization of (E,E)-methyl sorbate (MS) and (E,E)-ethyl sorbate (ES). The effects of steric hindrance, electron-donating ability, and acidity of LPs on MS and ES polymerization were systematically investigated. High catalytic activity and high initiation efficiency can be achieved, leading to the formation of PMS with 100 % 1,4-selectivity, tunable molecular weight (Mw up to 333 kg mol-1 ), and narrow molecular weight distribution (MWD). Block copolymerization of ES and methyl methacrylate (MMA) was also realized. Meanwhile, this system can be applied to other homologous conjugated diene substrates. Furthermore, simple chemical reactions can efficiently convert PMS to different polymers with strict (AB)n sequence structures, such as poly(sorbic acid), poly(propylene-alt-methyl acrylate), poly(propylene-alt-acrylic acid), poly(propylene-alt-allyl alcohol), and poly(ethylene-alt-2-butylene).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.