Abstract

The rate of reductive elimination of the complexes dpppPd(CH2TMS)(CNER3) (E = B, Al) is accelerated up to 60-fold over dpppPd(CH2TMS)(CN). Based on kinetic considerations and the isoelectronic relationship of CN- and CO, a migration-type mechanism for reductive elimination is proposed. The rate acceleration correlates directly with Lewis acid strength, the latter determined by solution calorimetric analyses of the Lewis acid adduct forming reaction Pd−CN + ER3 → Pd−CN−ER3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.