Abstract

This review presents representative examples illustrating how the Lewis acidic character of the Zn(II) metal center in Zn(salen)-type complexes, as well as in complexes of other tetradentate ligands, and the nature of the medium govern their supramolecular aggregation, leading to the formation of a variety of supramolecular structures, either in solution or in the solid state. Stabilization of these Lewis acidic complexes is almost always reached through an axial coordination of a Lewis base, leading to a penta-coordinated square-pyramidal geometry around the metal center. The coverage is not exhaustive, mainly focused on their crystallographic structures, but also on their aggregation and sensing properties in solution, and on their self-assembled and responsive nanostructures, summarizing their salient aspects. The axial ligands can easily be displaced, either in solution or in the solid state, with suitable Lewis bases, thus being responsive supramolecular structures useful for sensing. This contribution represents the first attempt to relate some common features of the chemistry of different families of Zn(II) complexes of tetradentate ligands to their intrinsic Lewis acidic character.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call